崔晓波出席爱分析中国大数据高峰论坛,总结改造行业的4大步骤

近日,TalkingData创始人兼CEO 崔晓波出席由北京爱分析科技有限公司主办的“2018·爱分析中国大数据高峰论坛”,并在会上做了题为数据智能应用和商业模式发展的演讲。

本次大会吸引了200多位行业精英与投资人共同参与,会议围绕着数据服务、大数据垂直应用、数据分析平台等多个领域进行了深入的探讨。

TalkingData创始人兼CEO 崔晓波

TalkingData创始人兼CEO 崔晓波在演讲中提到:“数据智能”在未来5到10年内是一个非常关键的概念。智能与数据相辅相成,如何运用好数据去创造智能,是企业需要在未来不断探索的方向。

同时,他又从五个方面剖析了 TalkingData 在大数据,特别是数据服务领域里的探索和思考。

一、中美市场的差异与联系

1、技术与基础设施差异

崔晓波认为:数据是链接中美智能应用的桥梁。

近两年来,TalkingData团队与世界最大的数据科学社区——Kaggle共同举办了两场活动。

第一场活动中,由TalkingData提供脱敏后的中国移动互联网行为数据集,邀请全球的数据科学家构建高准确率的人口属性预测模型。约有2600个团队参与了此次活动,共提交了约2万个模型。

通过研究可以知道数据的用法非常丰富,但既依赖于场景,又依赖于领域知识,因此中国真正缺乏的是针对如金融、地产、零售、互联网、工业等各种领域的相关知识,在这些领域里仍需要去长时间的探索。

目前,TalkingData又与Kaggle共同发起了名为:TalkingData 全球广告反欺诈算法大赛的活动。

TalkingData此次提供中国在广告反欺诈中遇到的大量相关问题和数据,而这正是很多国外的数据科学家难以遇到的。可以看出,中国在应用领域已经迈入前沿,但仍缺乏技术和基础设施。

2、数据安全上的差异

此外,中美在数据安全方面也有差异,崔晓波提到:真正拥有数据的企业不愿共享数据,而是选择垄断,因为很多技术问题尚未解决——如何安全的共享数据、以及数据合规等问题。

数据安全与网络安全情况迥异,企业IT系统由云、IDC以及内部网络构成,因此网络外面需要有一层边界,不能让黑客进来,但若该层边界都有问题,或企业出现内鬼,又如何保障数据安全呢?像 Facebook,其在数据安全上投入巨大,也出现了非常新的技术,例如可以通过网关看到企业所有的数据流动,信息如何从一点到另一点,又如何被使用。在这方面中国没有积累,技术上的差距有5到10年。

TalkingData 致力于解决这些问题,推出一套体系,在数据不流动的情况下也可以共享的解决方案。

业务的问题要回归技术,最终仍要用技术本身去解决问题,这是中国企业所欠缺的。因此崔晓波认为,中国下一阶段的数据服务需要突破技术的限制。

二、从实体物质化到虚拟数字化

崔晓波提到:“我们看世界的角度将从实体物质化转向数字虚拟化”。这将是未来的发展趋势。

未来是机器学习、深度学习的时代,Google 在2014年、2015年就将大量资源投入到机器学习研究中,因此在2016年,AlphaGo出现了。

AlphaGo将物理世界数字虚拟化,之后就可以用不断增长的计算机算法去加速学习过程,达到破局的效果。

但是在绝大部分领域还做不到这一点,因为如果一个机器或者一个算法不能帮人做决定,那么对这个行业,第一没有颠覆,第二没有价值。

自动驾驶技术达到L5(完全自动驾驶)就会颠覆了原有行业,但在L3以下就是辅助驾驶。在医疗领域,如果机器给出的结果真的能作为诊断结果,那也是颠覆,但是如果这个结果只能辅助人类诊断,其价值就有限。

要达到产生颠覆的阶段,所需要的时间远比我们想像的要长。

崔晓波认为,大家现在对人工智能过于乐观,未来几年会有所回落,但技术本身是非常具有价值的。

TalkingData创始人兼CEO 崔晓波

三、大数据通过四个步骤改造一个行业

根据TalkingData的经验,不管何种行业都可以从四个步骤去进行改造。

  • 业务数据化
  • 应用场景化
  • 流程自动化
  • 决策智能化

首先是业务数据化

根据以往经验,很多传统行业的业务流程没有真正数据化,业务好或不好都没有一套数据体系、指标体系、方法论体系去进行评估管理,而“业务数据化”就是各种大数据、商业智能等技术搅合在一起的过程。

其次是应用场景化

这里特指数据应用的场景化——在完成数据化后,考虑用何种方法提升业务,用大数据、算法模型、机器学习的方法去做应用场景化。

但目前该过程还是更多基于人工,基于分析师对业务的了解或个人经验,中国90%以上的企业还处于这样的阶段,包括互联网企业。

第三是流程自动化

已经有一些头部企业走到了这一步,比如TalkingData正在合作的某餐饮企业,其拥有50人的数据团队,非常重视数据预测——卖多少汉堡、卖多少咖啡。在TalkingData的帮助下,其预测准确率已经达到95%以上,整个过程需要运用大量的数据,包括天气、路况、客流、历史交易等等。

该餐饮企业可以据此优化第二天的排班、供应链情况,计算下来一年节省上亿元的费用。

第四是决策智能化

TalkingData也为企业选址提供帮助,因为对于下线零售商来说,店铺位置也就决定了这家店是否能成功的百分之七八十。例如TalkingData为某客户提供的选址服务,通过客户提供的三年历史收入数据,经过建模和优化,不仅能够准确预测历史收入,还能够进一步预测新店未来三年的收入,并且实现了自动化预测。之前该企业有200人的选址团队,现在只需要20人,这是TalkingData帮助优化的结果。

以上几步完成后,还有一些头部企业进入到了效益数字化的阶段,当企业完成智能化后,已经有了很强的数据能力,这时企业开始考虑能否将该能力开放给其他企业,将其做成一些指标甚至是智能APP,提供给供应商和下游,甚至将业务切出来,再覆盖产业链中的中小企业。这也是TalkingData正在研究的一个模式。

四、数据智能演进的三个阶段

从TalkingData角度来看,数据智能的演进分为三个阶段:

1)Data到Analysis:拥有大量数据,帮助开发者做分析,但从数据到分析只是浅层次重复,无法形成闭环和带来效益提升。

2)Data到Action:走不通第一阶段,尝试下一步,看数据能做什么,比如是否能优化广告和营销。这在国外可行,但国内很难,因为中国拥有太多的不透明。诺大的网络有很多不透明的算法,将数据的算法逻辑都抵消掉了。

3)Data到Data Science:现在越来越多的企业走到第三个阶段,将数据变成数据模型,证明数据在什么地方对商业有价值。对于企业来说,模型比人工更具有优势,运用之后后以前能做50个产品现在能做500个,这就是提升。

通过Data到Data Science形成闭环,依赖模型持续提升效果,现在是大家的共识。

五、数据服务价值长期才能显现

数据回报定律是指在指数级世界里,数据对商业价值的回报都是加速的,TalkingData服务的所有企业都有这个趋势。

第一年看不到数据对商业有特别明显的回报,而在第二、第三年后就很明显。

TalkingData服务的很多客户都是例证,通过数据真的可以每年节省上亿费用或带来非常可观的回报。

但目前也有很多数据企业急于求成,对客户承诺三个月或半年即可产生帮助,但其实很难做到,结果一定是两三年以后才能显现。

发表评论

电子邮件地址不会被公开。 必填项已用*标注